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ABSTRACT 

An analysis  was made of specular rad ia t ion  exchange within a c i r c u l a r  

tube open a t  both ends and i n  vacuum. 

from an environment a t  each end and  can have a uniform heat  f l u x  supplied 

The tube is exposed t o  thermal r a d i a t i o n  

a t  i t s  w a l l .  The ex terna l  surface of t h e  tube w a l l  i s  insulated,  while t h e  

i n t e r n a l  surface i s  a gray, specular (mirror l ike)  r e f l e c t o r  f o r  thermal 

r a d i a t i o n .  The i n t e g r a l  equations governing t h e  rad ia t ion  exchange are 

solved t o  determine t h e  i n t e r n a l  surface temperature and the  amount of heat 

t ransmit ted through t h e  tube from t h e  environment a t  one end t o  the o ther .  

Specular r e f l e c t i o n s  were found t o  reduce t h e  maximum surface temperature of 

t h e  heated w a l l  as compared w i t h  d i f fuse r e f l e c t i o n s ,  and i n  some instances 

t h e  maximum temperature w a s  below t h e  value f o r  a black surface.  The 

energy t ransmit ted through the tube was l a r g e r  f o r  t h e  specularly r e f l e c t i n g  

w a l l  than  f o r  d i f fuse  r e f l e c t i o n s .  It w a s  a l s o  shown t h a t  the  energy 

t ransmi t ted  f o r  a d i f fuse ly  r e f l e c t i n g  gray w a l l  i s  the  same as f o r  a black 
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NOMENCLATURE 

area  on ins ide  surface of tube wall  

tube diameter 

e r r o r  correct ion f o r  separable kernel so lu t ion  

configuration f a c t o r  f o r  d i r e c t  r ad ia t i an  between a r ing  element on the  

tube w a l l  and a c i r c u l a r  area a t  end of tube 

exchange f ac to r  f o r  specular r ad ia t ion  between two r ing  elements on 

in s ide  of tube 

configuration f a c t o r  f o r  d i r e c t  rad ia t ion  between two.r ing elements on 

in s ide  of tube 

length  of tube 

dimensionless length,  L/D 

exchange f a c t o r  f o r  specular  r ad ia t ion  between a r ing  element on t h e  

tube w a l l  and a circular area a t  end of tube 

see  Eq.  (12)  

hea t  t ransmi t ted  through length  o f  tube  

hea t  added per  u n i t  a rea  a t  tube w a l l  

ab s o l u t  e temperature 

a x i a l  l ength  coordinate measured from l e f t  end of tube 

dimensionless coordinate, X/D 

defined as  x/(n+l) 

coordinate equal t o  

emiss iv i ty  of surface 

dimens ion less  temperature, uT$/q 

2-x; yn = y/ (n+l )  



4 4  dimens ionles s temperature, Tw/Tz 

so lu t ion  f o r  8 using separable kernel  (see Eq. (18)) 

loca t ion  of r i n g  element radiat ing t o  element a t  

dimensionless var iable ,  Z/D 

Stefan-Boltunann constant 

see Eq.  ( 1 2 )  

i n t e g r a l  defined i n  Eq.  ( 2 1 )  

X 

Subscripts 

2 environment a t  l e f t  end of tube 

r environment a t  r i g h t  end of tube 

w tube w a l l  

INTRODUCTION 

When t h e  exchange of thermal rad ia t ion  between surfaces is  being determined, 

it i s  o f t e n  assumed t h a t  the surfaces are d i f fuse  r e f l e c t o r s .  However, as 

discussed i n  [l], many mater ia ls  r e f l e c t  a t  l e a s t  p a r t i a l l y  i n  a specular 

manner. This is espec ia l ly  t r u e  for surfaces w i t h  a mirror l ike f i n i s h  where 
re$lect ims 

w i l l  be almost e n t i r e l y  specular .  t h e  &i~.t- The purpose of . .  

t h i s  paper i s  t o  inves t iga te  t h e  l imit ing case of 

exchange i n  an enclosure/and compare it w i t h  
In betk cases it is Q reasobab(C asslrmkt1.4 t o  have b o  ernissioh From the ~ u r k s  diffuse. Tho bfi- 
f i g u r a t i o n  which w a s  s tudied is a heated c y l i n d r i c a l  tube open a t  both ends. 

rad ia t ion  
d t h  pure$ t b r c d o r  retla4ions the for bm)tetclrg diHuSe reClorWba 

/behavior /  

This  i s  of i n t e r e s t  because there  is  a p o s s i b i l i t y  t h a t ,  f o r  a spec i f ied  w a l l  

heat f l u x ,  specular ly  r e f l e c t i n g  walls may diminish the w a l l  temperature i n  

some regions of t h e  tube.  Also with a curved polished tube it may be possible  

t o  channel heat from a source t o  another loca t ion  not i n  d i r e c t  view of t h e  

source.  I n  t h i s  case, i f  t h e  emissivity of t h e  surface i s  low, t h e  energy 
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rad ia ted  in to  one end of t h e  tube w i l l  be  r e f l ec t ed  down t h e  length of t h e  

enclosure and w i l l  emerge from the  other end with only s l i g h t l y  diminished 

i n t e n s i t y .  The transmittance through a s t r a i g h t  tube w i l l  be one of  t he  

r e s u l t s  of t h e  ana lys i s .  

There a r e  a few references which a r e  per t inent  t o  t h e  present study. 

For d i f fuse ly  r e f l e c t i n g  gray wal ls ,  temperature d i s t r ibu t ions  were found f o r  

sho r t  uniformly heated tubes i n  [ Z ] ,  and the  results a r e  extended here t o  

l a r g e r  length-diameter r a t i o s .  The d i f fuse  so lu t ions  a r e  needed f o r  comparison 

with the  specular r e s u l t s .  

configuration has been t r e a t e d  i n  [ 3 ]  by a n  approximate method for very long 

tubes,  bu t  a complete so lu t ion  w a s  not obtained. 

closed a t  one end and a t  constant w a l l  temperature, t h e  heat  f lux issuing 

from t h e  open end f o r  specular r e f l ec t ing  gray surfaces  w a s  considered i n  

[41 .  There is an e r r o r  i n  Eq. ( 7 )  of t h i s  reference which i s  corrected i n  

[ S I .  

For a specular r e f l e c t i n g  gray surface t h i s  

For a cy l ind r i ca l  hole 

The cy l ind r i ca l  tube considered here i s  open t o  a d i f f e r e n t  environment 

temperature a t  each end. The tube is  in  a vacuum s o  t h a t  heat exchanges 

occur only by t h e m 1  rad ia t ion .  

is neglected.  A spec i f i ed  uniform heat input i s  suppl ied a t  t h e  tube w a l l ,  

and t h e  outer  surface of t he  tube is assumed pe r fec t ly  insu la ted  s o  t h a t  a l l  

of t h e  energy received by t h e  w a l l  must be t r ans fe r r ed  out through the  ends 

of t h e  enclosure.  The ins ide  surface of t h e  w a l l  i s  assumed t o  be gray and t o  

r e f l e c t  specular ly .  

Axial heat  conduction within t h e  tube w a l l  

The energy equation governing t h e  r ad ia t ion  exchange is  a l i n e a r  Fredholm 

i n t e g r a l  equation. Because of  t h e  l i n e a r i t y ,  it is convenient t o  break the  
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general  problem i n t o  two p a r t s ,  (1) uniform heating appl ied a t  the tube w a l l  

with the ex terna l  environment a t  both ends of t h e  tube a t  zero temperature, 

and ( 2 )  t h e  w a l l  unheated with t h e  environment temperature equal t o  zero a t  

one end and having a spec i f ied  value a t  t h e  other end. 

t o  give the  general  case as shown i n  [Z]. 

These can be combined 

The i n t e g r a l  equation is solved 

by two separate  methods. I n  one the  in tegra ls  are approximated i n  f i n i t e  

difference form by using Simpson's r u l e .  This yields  a s e t  of l i n e a r  

a lgebraic  equations which are solved simultaneously f o r  t h e  w a l l  temperature 

a t  incremental lengths along the  w a l l .  I n  t h e  second method t h e  w a l l  

temperature ins ide  the  i n t e g r a l  s ign  is expanded i n  a Taylor s e r i e s  as 

suggested i n  [31. 

d i f f e r e n t i a l  equation which i s  solved numerically on a d i g i t a l  computer. 

This  transforms t h e  i n t e g r a l  equation i n t o  an ordinary 

These methods were appl ied t o  both the specular and diffuse cases f o r  a range 

of L/D and E .  

ENERGY BALANCE 

The energy equation f o r  t h e  surface temperature of t h e  tube i s  found 

by forming a heat balance on a cy l indr ica l  element of d i f f e r e n t i a l  area 

dAx loca ted  a t  X on t h e  inside surface of t h e  tube (Fig.  1). The energy 

leaving t h e  element by rad ia t ion  is 

The energy supplied t o  t h e  element i s  composed of th ree  terms. The f i rs t  

i s  t h e  spec i f ied  uniform heat f l u x  supplied t o  the  tube 

a% 



The second includes t h e  contributions from t h e  environments a t  t h e  l e f t  

and r i g h t  ends of the tube .  It i s  assumed t h a t  the  environments can,be 
Thus &kc ~ & L o K  cnC++;n3 t h ~ 9 h  t A t  e d s  i s  both d;Ffurtl> snS ~~ '~kf l rn l~  distnbcctGk * M Y  the  C k L  

represented by black planes a t  t h e  ends of t h e  tube.1 The exchange f a c t o r  

f o r  specular rad ia t ion  exchange from an element a t  X t o  the  c i r c u l a r  

obe'iR5S* 

opening a t  t h e  l e f t  end is  ca l led  M ( X ) ,  and it is derived l a t e r .  The 

f a c t o r  M ( X )  has been based on a n  element of tube w a l l  a rea .  The 

absorp t iv i ty  of t h e  surface i s  assumed constant and equal t o  i t s  emissivi ty  

using t h e  usual  gray w a l l  assumption. 

end i s  

i s  absorbed is  

The rad ia t ion  enter ing t h e  l e f t  

UT: per u n i t  area. The portion of t h i s  t h a t  a r r i v e s  a t  X and 

In  a similar fashion the  rad ia t ion  supplied by the  environment a t  t h e  r i g h t  

end is 

The t h i r d  ener&y input t o  t h e  element i s  t h a t  supplied from the other  

elements of the  tube w a l l .  

between two r i n g  elements a dis tance Z apar t  i s  defined as G(Z) and is 

The exchange f a c t o r  f o r  specular rad ia t ion  

derived l a t e r .  .Then t h e  energy radiated 

reaches and is  absorbed by another a t  X 

The contr ibut ion from t h e  e n t i r e  w a l l  is 

the  length  of t h e  tube: 

that 
from one element a t  Z 

is 

found by in tegra t ing  Eq. ( 4 )  over 
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'The heat balance can now be formed by equating Eq. (1) t o  t h e  sum of (Z), 

( 3 ) ,  and (5) :  

The expressions f o r  M and G w i l l  now be derived. 

Exchange f a c t o r  between r ing  element and end of tube.  - For specular 

rad ia t ion  t h e  exchange f a c t o r  M is composed of the sum of exchanges due t o  

d i r e c t  rad ia t ion ,  one re f lec t ion ,  two re f lec t ions ,  and s o  f o r t h .  The f a c t o r  

f o r  d i r e c t  exchange between a r ing  element a t  X 

the  l e f t  end of t h e  tube has been given i n  [ 6 ]  or [21  by 

and a c i r c u l a r  opening at 

F(X) = X 
D 

- -  

The energy exchanged by one r e f l e c t i o n  can be computed as shown i n  F ig .  2 .  

The radiant  energy from t h e  element at X t h a t  passes d i r e c t l y  m o u g h  t h e  

plane a t  

is r e f l e c t e d  w i l l  leave the opening a f t e r  one r e f l e c t i o n .  

from the  element a t  X t h a t  s t r ikes  the w 4 l l  before passing through t h e  

plane a t  

X/2 w i l l  e i t h e r  leave t h e  tube opening d i r e c t l y ,  o r  t h e  p a r t  t h a t  

The radiant  energy 

X/Z w i l l  require  two or more r e f l e c t i o n s  before leaving t h e  tube. 



A s  a r e s u l t ,  t h e  exchange between t h e  r i n g  element and t h e  end of t h e  tube 

f o r  one r e f l e c t i o n  equals t h e  r e f l e c t i v i t y  of t he  w a l l  mul t ip l ied  by t h e  

difference between t h e  energy rad ia ted  through t h e  plane 'at 

rad ia ted  d i r e c t l y  out of t h e  tube.  The configuration f a c t o r  f o r  t h e  energy 

X/2 and t h e  energy 

t h a t  i s  rad ia ted  through X/Z is given by F(X/2), and t h e  f a c t o r  f o r  

t he  energy leaving d i r e c t l y  i s  given by 

f ac to r  f o r  one r e f l e c t i o n  is equal t o  

F(X).  Consequently t h e  exchange 

(14) [ F ( x / ~ )  - F(X) 1. 

In  a similar fashion if  there  a re  two r e f l ec t ions  t h e  f ac to r  i s  found 

as fol lows.  The rad ian t  energy from the  element a t  X t h a t  s t r i k e s  t h e  

w a l l  before  passing through a plane located a .distance X/3 from X w i l l  

r equi re  t h r e e  or more r e f l ec t ions  f o r  any p a r t  of it t o  leave t h e  tube,  

while t h e  energy that passes d i r e c t l y  through a plane a t  X/2 w i l l  require  

one or no r e f l ec t ions  before any p a r t  of it leaves .  For two r e f l e c t i o n s  

t h e  exchange f ac to r  i s  then the  r e f l e c t i v i t y  squared times t h e  d i f fe rence  

between t h e  configuration f ac to r  f o r  the energy passing through a cross 

sec t ion  a t  a dis tance X / 3  from X and t h e  configuration f ac to r  f o r  the  

energy passing through t h e  cross sect ion a t  X/2:  

I n  a similar fash5on f o r  n r e f l ec t ions  
1 

The exchange f ac to r  between a r i n g  and t h e  l e f t  end of t he  tube is found 

by summing , t h e  contr ibut ions from a l l  t h e  r e f l ec t ions :  
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The f a c t o r  from a r i n g  t o  the  r i g h t  end of t h e  tube follows i n  an i d e n t i c a l  

fashion : 

M(L-X) = F(L-X) + 2 ( l - ~ ) ~  F(s) - F (%fl (7b)  

n=l  

Exchange f a c t o r  between two r i n g  elements. - Here again the t o t a l  

exchange is computed by summing t h e  d i rec t  exchange, exchange by one r e f l e c t i o n ,  

exchange by two re f lec t ions ,  and s o  for th .  The d i r e c t  exchange is obtained 

from t h e  configuration f a c t o r  between two r i n g  elements separated by a 

dis tance Z ( see  [ 6 ]  o r  [21)  

K ( Z )  = 1 - :  

The energy a r r i v i n g  after one r e f l e c t i o n  a t  an element located Z 

distance away from t h e  emitt ing element is obtained as follows (see Fig.  3 ) .  

The only energy from % t h a t  can reach % a f t e r  one r e f l e c t i o n  

halfway between and %. z/2 - must be r e f l e c t e d  from an element dA 

The exchange f a c t o r  f o r  enerQy leaving 

t h e  element d A q 2  is I(;). An amount (1-E) of t h i s  is  specularly 

r e f l e c t e d  t o  dAx. 

& which a r r i v e s  d i r e c t l y  a t  - 

However, as shown i n  Fig.  3, only half  of 

t h e  r e f l e c t e d  r a d i a t i o n  is  intercepted by the  element dAx, 
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since the  radiat ion from any point on dA.= t h a t  i s  r e f l ec t ed  a t  Z/2 - 
w i l l  i r r a d i a t e  a region twice as la rge  as dAx when it reaches the  X 

locat ion.  To account f o r  t h i s ,  a factor  of 1 /2  has t o  be introduced, and 

t h e  exchange f ac to r  f o r  one r e f l ec t ion  becomes 

In  a similar fashion f o r  n ref lect ions t h e  r e s u l t  is  

n+l  

The t o t a l  exchange i s  found by swnming t h e  r e s u l t s  f o r  all re f lec t ions  t o  

give 
m 

n = l  

The exchange fac tors  given by Eqs . (7 )  and (8) can pow be subs t i tu ted  

in to  the energy equation ( 6 ) ,  which i s  t o  be solved fo r  the  unknown w a l l  

temperature. 

SUPERPOSITION OF SOLUTIONS 
4 

The energy Eq. (6 )  is l i n e a r  i n  the var iable  Tw and as a consequence 

* t he  general  so lu t ion  can be simplified by considering two more elementary 

so lu t ions  which can be combined t o  y ie ld  r e s u l t s  f o r  any combination of 

imposed w a l l  heat f lux 

environment temperature Tr.  

i s  heated but t h e  environments are maintained a t  zero temperature. 

q, l e f t  environment temperature TI, and r igh t  

One of the basic  solut ions is  where the  w a l l  

I n  t h i s  

case Eq. ( 6 )  reduces t o  
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- X c( x = B, and 5 - a: 
= €7. where 8 = - 

Q ’  

The second basic  solut ion i s  where no heat is supplied a t  the channel 

walls and t h e  r i g h t  environment 

while t h e  l e f t  environment T2 has a spec i f ied  value. Equation (6 )  then 

Tr is maintained a t  zero tem’perature 

reduces t o  

where 

When 8 and 8, are known, t h e  general so lu t ion  f o r  any q, T2 

and T r  is found from 

The quant i t ies  ee(x) and Oe(2-x) can be r e l a t ed  by noting tha t ,  for 

4 4 4  q=O and T = Tr, T must equal 2 W 

4 Q -% % 
Tt ,  and Eq. (11) gives Qk(&Zk) = l-ee@). 

A s  a r e s u l t  Eq. (11) can be wr i t ten‘ in  the  alternate form 

fl:(x) = q8(x) + u(T2-Tr)8, + UT: ( l l a  1 4 4  

We now -proceed t o  obtain solut ions f o r  0 and 8, from Eqs. ( 9 )  and (10). 
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NUMERICAL SOLUTION OF INTEGRAL EQUATION 

It i s  convenient t o  wr i t e  Eqs. ( 9 )  and (10) i n  t h e  same form. This 

where when 

The numerical so lu t ion  of Eq. ( 1 2 )  w a s  found by dividing t h e  tube in to  

increments by se l ec t ing  N + 1 points  along i ts  length,  where N i s  an 

even number. The incremental length between points  i s  then 

Equation ( 1 2 )  i s  appl ied a t  each point,  and t h e  in t eg ra l s  a r e  approximated 

by using Simpson's rule. This gives a s e t  of N + 1 l i n e a r  a lgebraic  

A = Z/N. 

equations which can be solved simultaneously f o r  t h e  unknown temperatures 

along t h e  tube.  

t h e  integrand @(#)Glx-S1 has a discont inui ty  i n  der iva t ive  a t  5 = x .  

Simpsori 'srule i s  based on f i t t i n g  a parabola between t h r e e  points ,  and 

if t h e  d iscont inui ty  is  anywhere between t h e  end points ,  t h e  approximation 

There is a spec ia l  approximation t h a t  must be made because 
$ 

t o  t h e  curve may be poor. I n  these cases, s ince  the  funct ion @ does not 

have a d iscont inui ty ,  an intermediate value of 0 .  i s  in te rpola ted  a t  

n 5 = x - 7  halfway between t h e  discont inui ty  6 = x and t h e  previous point 
L 

5 = x-A. Then Simpson's r u l e  is applied f o r  t h e  

and x.  The value of @ a t  x - A - must A 
2' 2 x - -  

a t  t h e  surrounding points  s o  as  not t o  introduce 

th ree  points  x-A, 

be found i n  terms of @ 

any new unknowns. This 
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w a s  done by using t h e  in te rpola t ion  formula 

@ (x - $)= -g-:@ 3 (x-A) + 4 3 @ (x) - - 1 @ (x+A) a 

The same procedure w a s  used t o  approximate the  i n t e g r a l  i n  t h e  i n t e r v a l  

between 5 = X and X + A. Further d e t a i l s  on t h i s  procedure a r e  given 

i n  [ 7 1 .  When solving t h e  set  of simultaneous equations t h e  computations 

a r e  considerably shortened by noting as discussed i n  [ 2 1  f o r  t he  d i f fuse  

case t h a t  0 is  symmetric and 0, is  skew symmetric about 2/2 .  

TAYLOR SERIES SOLUTION 

A shortcoming of t he  numerical method described i n  t h e  preceding 

sec t ion  is  that, when t h e  tube is long, l a r g e  numbers of increments are 

required,  and it becomes d i f f i c u l t  t o  obtain an accurate  so lu t ion  t o  a 

l a r g e  s e t  of simultaneous equations.  Hence an a l t e r n a t e  procedure w a s  

inves t iga ted  which has been suggested i n  [S I .  I n  t h i s  method a Taylor 

s e r i e s  approximation w a s  made f o r  t h e  temperature function @&)in Eq. ( 1 2 ) :  

I n  t h e  present study t h e  se r i e s  expansion w a s  not ca r r i ed  beyond t h e  second 

de r iva t ive  term. 

Subs t i t u t ing  Eq. (13) f o r  @ ( E )  i n  t he  in tegra ls  i n  Eq. (12)  gives 
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The in tegra t ion  can now be car r ied  out because it i s  w i t h  respect  t o  

while 4 and i t s  der ivat ives  a r e  functions of x and hence can be 

E ,  

taken out of t h e  i n t e g r a l .  This gives t h e  following second-order 

where the terms i n  t h e  brackets are given by 

J O  

m r 

n=O L 

r 1 

r 
J O  n=O L 

1 

For the  Taylor s e r i e s  approximation t o  y i e l d  accurate solut ions,  one of two 

conditions must be f u l f i l l e d :  (1) The kernel  G15-xI decreases s u f f i c i e n t l y  



fast  as 19-xl increases from zero tha t  over t h e  i n t e r v a l  where the Taylor 

s e r i e s  approximation f o r  @ is no longer accurate  very l i t t l e  is contributed 

t o  t h e  in tegra ls ,  o r  ( 2 )  The solut ion Q ( x )  i s  such a simple curve t h a t  it 

can be represented with good accuracy over i t s  e n t i r e  length by a Taylor 

s e r i e s  of th ree  terms expanded about any poin t .  

was solved by forward in tegra t ion  using t h e  Runge-Kutta method on a d i g i t a l  

computer. The boundary conditions a re  d i f f e r e n t  f o r  t h e  8 and 8, functions,  

and w i l l  be discussed one a t  a time. 

The d i f f e r e n t i a l  equation (1s) 

The 8 function i s  symmetric about t h e  center  of t h e  tube (x = 2/2)  

and hence the  in tegra t ion  can b e  s t a r t e d  there  w i t h  the  boundary condition 

The in tegra t ion  is car r ied  forward t o  x = 2 .  To start the  in tegra t ion  a 

value of 8(2/2) 

d i f f e r e n t  temperature d i s t r i b u t i o n  w i l l  be obtained. To determine which . 

has t o  be guessed, and f o r  each value t h a t  is chosen a 

s o l u t i o n  is  correct  the  d i s t r i b u t i o n s  are each t e s t e d  i n  an overa l l  heat 

balance which w i l l  be s a t i s f i e d  when the correct  8(2/2) i s  used. The 

hea t  balance is derived as follows. The heat added a t  the tube w a l l  is 

WDL. The heat rad ia ted  out of the l e f t  end of the  tube is 

Since by symmetry t h e  heat leaving t h e  r i g h t  s i d e  of t h e  tube is equal t o  

t ha t  leaving t h e  l e f t  s ide,  the  heat balance can be wr i t ten  as 
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This can be placed i n  t h e  dimensionless form 

nZ 

The correct  Taylor s e r i e s  solut ion f o r  8 w i l l  s a t i s f y  t h i s  r e l a t i o n  

The function 0, i s  skew symmetric about 2/2 and i n  t h i s  case t h e  

in tegra t ion  is  s t a r t e d  from t h e  boundary condition 

e, = a t  x - - z / ,  

The f irst  der ivat ive dee/& a t  2/2 is, guessed, and t h e  d i f f e r e n t i a l  equation 

i s  in tegra ted  t o  .x= 2 :  The solut ion is then t e s t e d  i n  t h e  boundary 

condition obtained by evaluating the  o r i g i n a l  i n t e g r a l  equation (10) a t  

.x = 2 

If t h i s  is not s a t i s f i e d  a new derivat ive a t  2/2 i s  t r i e d  and the  so lu t ion  

repeated.  Since t h e  d i f f e r e n t i a l  equations f o r  8 and 0, are l i n e a r ,  

only two t r i a l  solut ions a r e  needed t o  in te rpola te  t h e  correct  so lu t ion .  

ERROR CORRECTION SOLUTION 

For comparison with t h e  results f o r  specular r e f l e c t i o n s  it is necessary 

A s  shown i n  [ 2 ]  
.. 

t o  have solut ions f o r  t h e  case where the surface is d i f fuse .  
- 

these  can be found when t h e  r e s u l t  for a black tube is known. For a black 

w a l l ,  solutiorr; can be found numerically or with t h e  Taylor series method by 

l e t t i n g  E = 1 i n  the  previous formulations. Results f o r  shor t  tubes a r e  

a l s o  given i n  [21 where a v a r i a t i o n a l  method and a separable kernel  method 

were employed. The seperable kernel  method begins t o  be i n  e r r o r  f o r  tubes 



with L/D > 5, and hence t h e  ana lys i s  i n  [ 2 ]  needs t o  be extended t o  apply f o r  

longer tubes before it can be compared with t h e  present  r e s u l t s  which extend 

t o  L/D = 20.  This can be done by f inding an e r r o r  cor rec t ion  f o r  t h e  

separable kerne l  so lu t ion  by using a method out l ined  i n  [81. This discussion 

i s  l imi ted  t o  determining t h e  so lu t ion  for 0 with a black w a l l .  For t h i s  

case t h e  i n t e g r a l  equation (9 )  reduces t o  

- 
An approximate so lu t ion  0 found i n  [ Z ]  by using t h e  approximate separable 

kerne l  is 
- 
0 = 2 + 1 + 2 (xz-XZ) , (18) 

A corrected so lu t ion  0 is found by determining t h e  error E(%) introduced 

by using t h e  approximate kernel  s o  t h a t  
- 

0(x )  = 0(x) + E(x) 

The e r r o r  is  found from t h e  i n t e g r a l  equation 

z 
E(x)  = + K1x-S I E(6)d-S 

where 

The quant i ty  i n  parenthesis  i s  t h e  difference between t h e  exact and approxi- 

mate ke rne l s .  

Equation (20 )  i s  of t h e  same type as t h e  o r i g i n a l  Eq. cl7) and can 

be solved by using an  approximate kernel t o  y i e l d  an  approximate E(x ) .  
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The e r r o r  i n  E ( x )  w i l l  be a small second-order d i f fe rence  i n  t h e  f i n a l  

so lu t ion .  Introducing the  separable  kernel i n t o  t h e  i n t e g r a l  involving 

E ( S )  i n  Eq. (20) gives 

By d i f f e r e n t i a t i n g  twice and subt rac t ing  t h e  o r i g i n a l  equation mul t ip l ied  

by four, t h e  in t eg ra l s  are eliminated t o  give 

Af te r  i n t eg ra t ing  twice, t h e  so lu t ion  is  

E(x)  = $ ( x )  - 4 Jr(x)dxdx + c1x + c2 (23)  

where C 1  and C2 a r e  a r b i t r a r y  constants which remain t o  be determined. 

The funct ion $ ( x )  i n  Eq. (23) i s  found b y  carrying out t h e  i n t e g r a t i o n ' i n  

Eq. (22). It i s  subs t i t u t ed  i n t o  Eq.  (23)  and in tegra ted  twice.  The 

con,tant C1 is evaluated by using the  f a c t  t h a t  E ( x )  is symmetric about 

x = 2/2 so t h a t  dE/dx a t  2/2 equals zero.  The constant Cz is found 

by applying t h e  boundary condition obtained by evaluat ing Eq. (22 )  a t  

21 

x = 0 .  These s t eps  requi re  considerable a lgebra ic  manipulation which it 

w a s  f e l t  not worthwhiie t o  include here .  Hence we go d i r e c t l y  t o  t h e  

f i n a l  answer 

1 E ( X )  = [i + ZX(I-X)]  ( -  + I + 22 + z 3 / 3 )  + S ( X )  + S(1-x) + C2 

(24) 
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where 

s ( x )  =(; - x)  Loge(. + 4x1 

and 

c2 = 2 + c 1  l+Zx(l-x) 
' ,-zi ) ( l+e  

The f i n a l  corrected so lu t ion  i s  obtained by adding E(x) t o  t h e  approxi- 

mate so lu t ion  given i n  Eq. (18). Numerical r e s u l t s  are given i n  t h e  

next s e c t i o n .  

RESULTS FOR UNIFORMLY HEATED WALLS WITH ENVIRONMENT AT ZERO TEMPERATURE 

I n  t h i s  s ec t ion  r e s u l t s  are given f o r  t h e  case when t h e  tube w a l l  i s  

uniformly heated and the  environment a t  each end of t h e  tube i s  a t  zero 

temperature.  

Diffuse sur face .  - For comparison with t h e  r e s u l t s  f o r  a specular  

surface t h e  so lu t ions  f o r  t h e  d i f fuse  case are needed. I n  [ 2 1  it w a s  

shown t h a t  t h e  d i f fuse  gray so lu t ion  can be obtained from t h e  r e s u l t s  f o r  

a black w a l l  by using t h e  r e l a t i o n  
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Since t h e  black w a l l  so lu t ion  does not depend on whether t h e  surface i s  spec- 

u l a r  or di f fuse ,  it i s  obtained from the  present specular  ana lys i s  by l e t t i n g  

E go t o  un i ty .  For black tubes with lengths of 2 = 5, 10, and 20, values 

are tabulated i n  Table 1 f o r  both t h e  d i r e c t  numerical computation 

and t h e  Taylor s e r i e s  method. 

[21 obtained by using a va r i a t iona l  procedure and an approximate separable 

kerne l .  

increases ,  but after adding t h e  e r r o r  correct ion from t h e  previous sec t ion  

t h e  r e s u l t s  are very good. 

f r a c t i o n  of 1 percent and were used along with Eq. (25)  t o  determine t h e  

d i f fuse  curves i n  F ig .  4.  

Included f o r  comparison are t h e  so lu t ions  from 

The l a t t e r  method gives l e s s  accuracy as t h e  length of t h e  tube 

The present so lu t ions  a l l  agree within a 

Specular sur face .  - For specular  w a l l s  r e s u l t s  were found f o r  a few 

d i f f e r e n t  emiss iv i t ies  by both t h e  numerical and Taylor series methods. A 

comparison of t h e  r e s u l t s  is given i n  Table 2 . f o r  a few d i f f e r e n t  lengths,  

and t h e  agreement is within 3 percent .  Figure 4 compares t h e  specular  and 

d i f fuse  w a l l  temperature d i s t r ibu t ions  f o r  2 = 5, 10, and 20. I n  cont ras t  

with t h e  d i f fuse  so lu t ions  t h e  specular temperatures do not increase 

monotonically as t h e  emissivi ty  is  reduced but  go through a minimum value 

when t h e  emissivi ty  is  i n  t h e  range of 0 .1  t o  0.5. The presence of a 

minimum can be in te rpre ted  physical ly  as follows. Since t h e  outs ide 

1 of t h e  heated tube is assumed per fec t ly  insu la ted  a l l  t h e  heat supplied must 

be d i s s ipa t ed  through t h e  open ends of t h e  tube.  The temperatures i n  t h e  

c e n t r a l  por t ion  of t h e  tube w i l l  be  minimized when t h e  optimum communication 

i s  achieved between t h i s  p a r t  of t he  tube and the  end openings. The mir ror l ike  
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r e f l ec t ions  of a specular surface are qui te  e f f ec t ive  i n  t ransmi t t ing  energy 

through the tube and can even be  more e f f ec t ive  than a black sur face .  

Figure 5 shows t h e  w a l l  temperature at the midpoint of t h e  tube (X = L/2) 

as a funct ion of emissivi ty .  As the tube length is increased, a smaller 

emissivi ty  is  required t o  obtain t h e  maximum reduction of midpoint 

temperature, and t h e  temperatures a r e  subs t an t i a l ly  below the  values f o r  a 

black sur face .  

MSULTS FOR UNHEATED WALL AND SPECIFIED ENVIRONMENT TEMPERATURES 

In  t h i s  sec t ion  r e s u l t s  are given f o r  t he  case where no heat f l u x  is  

imposed a t  the  tube w a l l  and the  r i g h t  end environment i s  a t  zero temperature 

while t h e  l e f t  end environment is a t  a spec i f i ed  temperature. 

Diffuse so lu t ion .  - When the re  is no heat f lux imposed a t  the tube 

w a l l  ( Q  = 0) t h e  d i f fuse  so lu t ion  is found from Eq. (25) as 

This shows that,  f o r  t h e  unheated wall, ( Q  = 0) ,  the emissivi ty  of t h e  

w a l l  has no influence on t h e  wal l  temperature d i s t r ibu t ion .  This  arises 

from t h e  f a c t  t h a t ,  f o r  an ex terna l ly  insu la ted  w a l l  with zero heat  conduction, 

a t  s teady state a l l  absorbed energy must be  reemitted from the  same loca t ion  

a t  which it w a s  absorbed. Both t h e  reemitted and r e f l ec t ed  e n e r a  are 

d i f fuse ,  and as a r e s u l t  a l l  of t h e  heat incident  upon an  elemental area 

w i l l  l eave  d i f fuse ly .  Hence it w i l l  not make any d i f fe rence  t o  what ex ten t  

the energy leaving t h e  surface is composed of energy t h a t  has been d i r e c t l y  

r e f l e c t e d  or  absorbed and r e rad ia t ed  and is  thus independent of t he  

emiss iv i ty  . 



- 22 - 
Specular sur face .  - The r e s u l t s  for  t h e  specular  surface were ca r r i ed  

out using both t h e  numerical procedure and t h e  Taylor s e r i e s  method out- 

l i n e d  previously, and t h e  two methods were i n  agreement within a few per- 

cent .  

f o r  d i f f e r e n t  tube lengths .  

of t he  tube,  s ince  the r e s u l t s  f o r  t h e  remaining ha l f  can r ead i ly  be 

I n  Fig.  6 a r e  shown t h e  dimensionless w a l l  temperature d i s t r ibu t ions  

The curves are given f o r  only t h e  f irst  ha l f  

obtained from the  skew symmetry of t h e  so lu t ion  

ee(x> = 1 - 6, (2-x) 

The curves show the re  is a decrease i n  t h e  maximum w a l l  temperature 

f o r  specular surfaces  as E becomes smaller.  The specular d i s t r ibu t ions  

a r e  more uniform than the  d i f fuse  curves which remain the  same for a l l  E .  

I n  t h e  l i m i t  as 

obtained from EqS ( l0)fas  

E + 0 t h e  specular  temperature d i s t r i b u t i o n  can be 
adQtb\ 

I n  p rac t i ce  as E --f 0, the  r ad ia t ion  exchange would be very small; 

consequently t h e  tube would be influenced more by hea t  t r a n s f e r  from t h e  

ex terna l  environment, s ince  it would not be possible  t o  in su la t e  t he  out- 

s i d e  sur face  of t h e  w a l l  pe r f ec t ly .  

A quant i ty  which can be computed from t h e  temperature d i s t r i b u t i o n  

i s  t h e  ne t  hea t  t r ans fe r r ed  a x i a l l y  through t h e  tube from t h e  hot l e f t  

environment t o  t h e  r i g h t  environment a t  zero temperature. A t  steady 

s ta te  t h e  heat  leaving t h e  r i g h t  end i s  equal t o  t h a t  en ter ing  t h e  l e f t  

end, which can be obtained as folLQws. 'The neat raCiiated LE frm the left.  
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4 ,D2 environment i s  f l l  . The heat radiated out t o  t h e  l e f t  environment 

from the  tube w a l l  is E C I T ~ D L ~  T:(X)M(X)dX. The net  heat t r ans fe r r ed  

through t h e  tube is  then 

The r e s u l t  f o r  t h e  d i f fuse  w a l l  i s  the same as f o r  t h e  black w a l l  and can 

be obtained from Eq. (27 )  when E = 1. This has been p lo t t ed  i n  F ig .  7(a)  

as a funct ion of tube length .  The maximum transmission occurs as t h e  length 

approaches zero. For an L/D of 10 the hea t  t r ans fe r r ed  through a tube 

with a black o r d i f f u s e  r e f l e c t i n g  w a l l  has been reduced t o  10 percent 

of t h e  maximum, and decreases slowly as t h e  length is  f u r t h e r  increased. 

Figure 7(b)  shows how t h e  heat t ransmit ted through t h e  tube is  

increased when t h e  w a l l  is specular .  When t h e  emissivi ty  of t h e  surface 

and i s  independent of t h e  4 nD2 
fly 4 is  zero t h e  heat t ransmi t ted  becomes 

channel length .  

dis tance by using a polished tube, and t h e  w a l l  temperature of t h e  channel 

can be kept reasonably low by using very small emissivities. This i s  

analogous t o  t h e  phenomenon i n  f i b e r  opt ics  i n  which l i g h t  is trapped 

in s ide  a g lass  fi lament and is  transmitted along i t s  length .  

Thus it may be possible t o  t r a n s f e r  hea t  over a considerable 

CONCLUDING REMARKS 

The temperature d i s t r i b u t i o n  along the  length of a heated tube has 

been determined when t h e  i n t e r n a l  heat exchange i s  by r ad ia t ion  only and 

t h e  outs ide  of t he  tube i s  insu la ted .  The l imi t ing  case w a s  examined where 



t h e  in t e rna l  tube surface is a completely specular r e f l e c t o r  and t h e  r e s u l t s  

were compared with those f o r  a d i f fuse  sur face .  

t h e  tube, a specular surface produces a temperature d i s t r i b u t i o n  which i s  

more uniform along t h e  tube length and i n  some cases reduces t h e  maximum 

temperature as compared with t h e  black or d i f fuse ly  r e f l e c t i n g  case. 

a heat f l u x  is  not imposed a t  t h e  tube w a l l ,  but  t h e  environment at one 

end of t he  tube i s  hot while t h e  other i s  cold, then heat i s  t ransmit ted 

longi tudina l ly  through t h e  tube.  

i s  not a funct ion of w a l l  emissivity,  whereas f o r  a specular  w a l l  t he  

transmission is subs t an t i a l ly  increased as t h e  emissivi ty  i s  reduced. I n  

a l l  instances more heat is t r ans fe r r ed  through t h e  tube i n  t h e  specular 

r e f l e c t i n g  case than i n  t h e  black o r  d i f fuse  cases,  and t h e  maximum w a l l  

temperatures a r e  lower for t h e  specular cases.  

For a given heat input t o  

When 

For a d i f fuse  w a l l  t h e  t ransmit ted heat 
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- 
10 

Variational 

2 0  

Separable Error 
kernel correct ion 

-- 

1.562 
1.978 
2.072 

1.816 
2.589 
2.739 

TABU I. - COMPARISON OF SOLUTIONS FOR DIMENSIONIXSS 
WALL TEMPERATURE (o/q)'I4 T, IN A HEATED 

BLACK TUBE (E = 1) WITH ! Z R O  

ENVIR0"T TEMpERATlTRE. 

1.565 1.557 
1.980 1.980 
2.074 2.070 

1 . 8 2 1  1.793 
2.639 2.587 
2.795 2.728 

0 
.25 
.5 

2.134 
3.488 
3.714 

Numerical 
(matrix 

6 olution) 

2.141 2.087 
3.616 3.467 
3.856 3.677 

1.557 
1 .980 
2.069 

Taylor 
series 

1.560 
1.979 
2.070 

0 
.25 
.5 

0 
.25 
.5 

1.795 
2.591 
2.733 

2.086 
3.472 
3.687 

1.804 
2.590 
2.734 

2 -108 
3.489 
3.706 

(n/q)'I4 T w 

I I I 
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5 0  

10 

TABLE 11. - COMPARISON OF SPECULAR SOLUTIONS 

E = 0.1 E = 0.5 

’ Numerical Taylor Numerical Taylor 
(matrix s e r i e s  (matrix s e r i e s  

so lu t ion)  so lu t ion)  

2.038 2.048 1.629 1.646 
.25 2.133 2.132 1 .895  1.892 
.5 2.155 2.156 1.952 1 .952  

0 2.172 2.198 1.826 1.865 
.25 2.357 2.354 2.326 2.321 
.5 2.396 2.397 2.418 2.418 

FOR DIMENSIONLESS W A L L  TIBEEEATLIKE 

(0/q) l l4  T, IN A HEATED TUBE WITH 

20 

ZERO ENVIRONMENT TEMpERATlTRE. 

0 2.357 2.412 2.082 2.148 
’ .25 2 . 7 0 1  2.698 2.966 2.962 

.5 2.766 2.767 3.111 3.111 
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F i g u r e  2 .  - R e f l e c t i o n s  of r a d i a n t  beams p a s s i n g  from element a t  X 
t o  opening a t  l e f t  end of  t ube .  
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Figure 4 .  - Dimensionless wall temperature d is t r ibu t ions  f o r  specular or 
d i f fuse  re f lec t ions  i n  a heated tube. TI= 0 ;  Tr = 0 .  
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Figure 4 .  - Continued. Dimensionless w a l l  temperature d i s -  
t r i b u t i o n s  f o r  specular o r  d i f f u s e  r e f l e c t i o n s  i n  a 
heated tube .  T2= 0; Tr = 0. 
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Figure  4. - Concluded. Dimensionless wall ternp- 
e r a t a r e  d i s t r i b u t i o n s  f o r  s p e c u l a r  o r  d i f f u s e  
r e f l e c t i o n s  i n  a hea ted  tube .  Tz = 0; Tr = 0 .  
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Figure 5. - Wall temperature a t  midpoint ( X  = L/2) of a 
heated tube for diffuse or specular w a l l s .  TI = 0 ;  
m 
l y  = 0 .  
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Figure 6 .  - Dimensionless temperature d i s t r ibu t ions  i n  an unheated tube with l e f t  environment a t  
temperature T2 and r i g h t  environment a t  Tr = 0. For 0.5 X/L 1.0, B e  (X/L) = 1 - B e  (1 - X/L). 
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Figure 7 .  - N e t  heat  transmitted through an unheated tube.  
Ty = 0 .  
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Figure 7 .  - Concluded. Net heat  transmitted through an unheated 
tube.  Ti = Ti; T, = 0 .  
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